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A. OBJECTIVES 
 

In this research, we have addressed the problem of how to achieve precision landing, in 
an autonomous manner, through an actively-controlled parafoil. By precision landing, we mean 
the capability of steering the vehicle to a pre-specified target area on the ground. The 
mechanization to achieve this maneuverability is provided by a parafoil, i.e. a high-glide 
parachute characterized by airfoil-type canopy cross-sections and wing-type plan forms, which 
can actively be steered to control the trajectory. Previous flight tests done at NASA Dryden 
(1991-1996) have established the feasibility of autonomous precision landing on Earth by means 
of GPS and a commercially-available ram-air parachute. This research leverages on this past 
achievement, and addresses the fundamental issues involved in using an actively-controlled 
parafoil and an image- in-the- loop architecture to land the spacecraft on a specific planetary 
surface location.  
The objectives of the task were: 

1) To obtain a detailed model of the parafoil dynamics and of the system dynamics in 
terminal descent. 

2) To obtain sensor/actuator models ready to be used in control design. 
3) To synthesize a feedback/switching controller showing some robustness to lateral wind 

gusts and enabling landing on the target with high precision. 
4) To demonstrate the concept by simulation. 

However, during the course of the investigation, we realized that it would have been 
more appropriate to look at the fundamental issues rather than focusing on a point design 
problem. Therefore, based on the fact that a parafoil-assisted descent needs first to come to terms 
with an unknown atmosphere, we focused our work on developing an atmospheric density 
estimator. 
 
B. PROGRESS AND RESULTS 
 

Significant progress has been made on achieving the first and second objectives. We now 
have a working dynamic model (Fig. 1 and Fig. 2) for simulations of the probe/parafoil system 
during descent in wind. Models of Mars’ atmosphere used for the PathFinder and MER 
simulations have been used, as well as simpler models derived for our balloon modeling work in 
the Mars Aerobot Validation Program for Earth, Venus, and Titan. The dynamic model of the 
system includes a rigid body model of the probe/parafoil vehicle in a flat Earth/planet 
approximation, a model of the apparent mass forces and torques acting on the inflated parafoil 
(which is a predominant effect in parafoil dynamics), a model of the aerodynamic coefficients of 
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the canopy, the suspension lines, and load as well. The aerodynamic coefficients of the parafoil 
are those of a typical sports jumper application [Ref. 1].  

 
A sensor suite is also modeled, and consists of an accelerometer, a star tracker, and a 

three-axis gyro mounted on the body of the probe. A more complex model has also been 
developed which also features a gimbaled camera mounted on the probe, actuated via a two-axis 
gimbal. The pulley-actuator model is represented by a first-order process, which takes into 
account the symmetric and asymmetric line pull with some characteristic lag. The dynamic 
model is of sufficient generality as to accommodate other prospective devices for controlled 
planetary descent, namely rotafoils, or Stokes decelerators, provided their aerodynamic 
characteristics are known in the form of wind-tunnel-derived aerodynamic coefficients. Figure 1 
shows the initial geometry of the system, as well as a typical descent profile with maneuvers 
such as: pull lines symmetrically to achieve a sink rate, operate a turn to the right (or to the left) 
via an asymmetric pull of the lines, and finally perform a flare to touch-down in proximity of the 
target. Figure 2 shows the elements present in the model and some details of the simulation 
environment, and Figure 3 (left) shows the profile of lift-to-drag ratio required to perform the 
maneuvers of Figure 1, as well as (right) the discrepancy in descent trajectory when a 3m/s 
lateral wind acts steadily during the descent. This simulation shows the dramatic effect that wind 
can have, and hints at the appropriate control philosophy that is required, which will be the 
subject of future work. 

Figure 4 (left) shows the excellent performance of the on-board, discrete-time, model-
based, density estimator, which relies on body-fixed accelerometer measurements only. The filter 
state equation is hρ β ρ= −&  where ρ is the current density, β  the height scale factor, and h the 
current height along the local vertical, and the measurement equation is given by 

1
0y Hx M C−= +  where H is the measurement sensitivity matrix, M is the mass matrix, and C0 the 

density- independent part of the equations of motion (of the form 0 1Mq C Cρ= +&& ). We assume 
that the knowledge of the aerodynamic and geometric parameters is exact, although methods for 
their estimation are available.  Figure 4 (right) depicts the functional phase of the descent to be 
considered in a more thorough study. The envisioned control architecture is based on an optical 
guidance scheme [Ref. 2]. The essentials of this architecture rely on a measure of the coordinates 
on the planetary geoid where the landing site is located. These coordinates are given in terms of 
longitude, latitude, and planetocentric radius. More simply, with the flat planet model we have 
developed, they are given in terms of (x,y,z) inertial coordinates. The control logic includes a 
feedback architecture to compensate for deviations from the intended flight path originated by 
wind gusts, a feed-forward logic which generates the programmed descent path and provides a 
reference for the feedback controller, and a switching logic to enable/disable the precision 
landing architecture when the system is in proximity of the target.  

 
C. SIGNIFICANCE OF RESULTS 
 

This task developed a dynamic-aerodynamic-control-estimation model of a fully-actuated 
parafoil controlling the descent of a space probe in a Mars- like planetary atmosphere. Based on 
the promising results allowed by the model developed in this task, our future work will focus on 
more robust estimation and control schemes, which will guide the vehicle to land autonomously 
at a specified target point. The findings from this investigation will apply to missions to Mars, 
Titan, and other planets with an atmosphere. The preliminary results obtained so far indicate that 
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precision control of these types of vehicles can be achieved, provided that enough control 
authority and enough knowledge of the atmospheric parameters (density, wind magnitude and 
direction) are available. 
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Figure 1. Geometry of problem (Left). The typical phases of a reentry trajectory (Right). 
 
 
 
 

 
 
 
Figure 2. Details of the dynamics model (Left). Matlab/Simulink simulation model (Right).  
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Figure 3. A typical lift-to-drag profile during descent (Left). Discrepancy in descent 
trajectories with and without wind (linear profile with altitude) present (Right). 
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Figure 4. Simulated (red) vs. estimated (blue) density during descent (left). Functional 
description of parafoil-assisted descent phase (right). 
 




